O.P.Code: 20CS0504

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 COMPUTER ORGANIZATION & ARCHITECTURE

(Common to CSE,CSM,CIC,CAD,CCC,CAI & CSIT)

		(Common to CSE,CSM,CIC,CAD,CCC,CAI & CSIT)											
Tin	ne:	: 3 Hours	Max. Marks: 60										
(Answer all Five Units $5 \times 12 = 60$ Marks)													
		UNIT-I											
1	a	Describe the Basic Operational Concepts of computer with neat	CO1	L2	8M								
		diagram.											
	b	Differentiate between control unit and ALU.	CO1	L2	4M								
	~	OR											
2	9	Discuss any two instructions in each group of Data Transfer, Data	CO 1	L2	6M								
_	а	Manipulation and Program Control Instructions with example.	COI		OIVI								
	h	What is Addressing Mode and List Different Addressing Modes.	CO1	L3	6M								
	U	UNIT-II	COI	LS	UNI								
3	Ex	xplain the Flow chart for Addition and Subtraction.	CO1	L2	12M								
		OR											
4	a	Subtract 1101 and -1001 using 2's complement subtractions.	CO3	L2	6M								
-		Discuss the overflow condition in addition and subtraction.	CO3	L2	6M								
	-	UNIT-III											
_			CO2	т э	CM								
5		Draw and explain four bit parallel adder – subtractor circuit.	CO3	L3	6M								
	b	Discuss about binary increment with neat sketch.	CO ₃	L2	6M								
		OR	~~~										
6		What is Hardwired Control? Explain in detail with a neat diagram.	CO6	L2	8M								
	b	Differentiate between Hardwired Control and Micro-programmed control.	CO6	L2	4M								
		UNIT-IV											
7	G	ive detailed notes on DMA transfers in computer system with neat sketch.	CO ₆	L3	12M								
		OR											
8	a	What is cache memory What is hit and miss in the cache memory.	CO4	L3	8M								
	b	List and Explain different mapping in Cache memory	CO ₄	L2	4M								
		UNIT-V											
9	a	Explain the concept of 4 stage Pipelining with diagram.	CO ₅	L2	6M								
	b	Sketch the flowchart for floating point multiplication in arithmetic	CO ₅	L3	6M								
		pipeline.											
		OR											
10	a	Explain cross bar switch with neat sketch.	CO6	L2	6M								
	b	Explain 2D mesh network with neat diagram.	CO ₆	L2	6M								
		*** END ***											

				Ī